Scaling limits of random walks on critical random trees and graphs

EURANDOM, 23-27 March 2015, YEP XII

David Croydon (University of Warwick)

1.	MOTIVATING	EXAMPLES

RANDOM WALK ON PERCOLATION CLUSTERS

Bond percolation on integer lattice \mathbb{Z}^d ($d \geq 2$), parameter $p > p_c$.

e.g. p = 0.54,



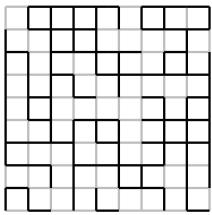
Given a configuration ω , let X^{ω} be the (continuous time) simple random walk on the unique infinite cluster — the 'ant in the labyrinth' [de Gennes 1976]. For \mathbb{P}_p -a.e. realisation of the environment,

$$q_t^{\omega}(x,y) = \frac{P_x^{\omega}(X_t^{\omega} = y)}{\deg_{\omega}(y)} \approx c_1 t^{-d/2} e^{-c_2|x-y|^2/t}$$

for $t \ge |x - y| \lor S_x(\omega)$ [Barlow 2004].

RANDOM WALK ON PERCOLATION CLUSTERS

Bond percolation on integer lattice \mathbb{Z}^d $(d \ge 2)$, parameter $p > p_c$. e.g. p = 0.54,



[Sidoravicius/Sznitman 2004, Biskup/Berger 2007, Mathieu/Piatnitski 2007] For \mathbb{P}_p -a.e. realisation of the environment

$$\left(n^{-1}X_{n^2t}^{\omega}\right)_{t>0}\to (B_{\sigma t})_{t\geq 0}$$

in distribution, where $\sigma \in (0, \infty)$ is a deterministic constant.

ANOMALOUS BEHAVIOUR AT CRITICALITY

At criticality, $p = p_c$, physicists conjectured that the associated random walks had an anomalous **spectral dimension** [Alexander/Orbach 1982]: for every $d \ge 2$,

$$d_s = -2 \lim_{n \to \infty} \frac{\log P_x^{\omega}(X_{2n}^{\omega} = x)}{\log n} = \frac{4}{3}.$$

[Kesten 1986] constructed the law of the **incipient infinite cluster** in two dimensions, i.e.

$$\mathbb{P}_{\text{IIC}} = \lim_{n \to \infty} \mathbb{P}_{p_c} \left(\cdot \middle| 0 \leftrightarrow \partial [-n, n]^2 \right),$$

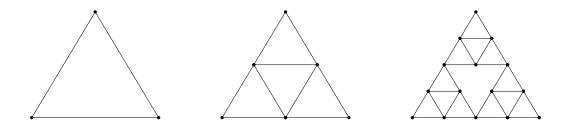
and showed that random walk on the IIC in two dimensions satisfies:

$$\left(n^{-\frac{1}{2}+\varepsilon}X_n^{\mathrm{IIC}}\right)_{n\geq 0}$$

is tight – this shows the walk is **subdiffusive**.

ANOMALOUS DIFFUSIONS ON FRACTALS

Interest from physicists [Rammal/Toulouse 1983], and construction of diffusion on fractals such as the Sierpinski gasket:



[Barlow/Perkins 1988] constructed diffusion (see also [Kigami 1989]), and established **sub-Gaussian** heat kernel bounds:

$$q_t(x,y) \approx c_1 t^{-d_s/2} \exp\left\{-c_2(|x-y|^{d_w}/t)^{\frac{1}{d_w-1}}\right\}.$$

NB. $d_s/2 = d_f/d_w$ – the **Einstein relation**. More robust techniques applicable to random graphs since developed.

THE '
$$d = \infty$$
' CASE

Let T be a d-regular tree. Then $p_c = 1/d$. We can define

$$\mathbb{P}_{\mathrm{IIC}} = \lim_{n \to \infty} \mathbb{P}_{p_c} \left(\cdot | \rho \leftrightarrow \text{generation } n \right),$$

e.g. [Kesten 1986].

[Barlow/Kumagai 2006] show AO conjecture holds for \mathbb{P}_{IIC} -a.e. environment, \mathbb{P}_{IIC} -a.s. subdiffusivity

$$\lim_{n \to \infty} \frac{\log E_{\rho}^{\mathrm{IIC}}(\tau_n)}{\log n} = 3,$$

and sub-Gaussian annealed heat kernel bounds.

Similar techniques used/results established for oriented percolation in high dimensions [Barlow/Jarai/Kumagai/Slade 2008], invasion percolation on a regular tree [Angel/Goodman/den Hollander/Slade 2008], see also [Kumagai/Misumi 2008].

PROGRESS IN HIGH DIMENSIONS

Law \mathbb{P}_{IIC} of the **incipient infinite cluster** in high dimensions constructed in [van der Hofstad/Járai 2004].

Fractal dimension (in intrinsic metric) is 2. Unique backbone, scaling limit is Brownian motion. Scaling limit of IIC is related to **integrated super-Brownian excursion** [Kozma/Nachmias 2009, Heydenreich/van der Hofstad/Hulshof/Miermont 2013, Hara/Slade 2000].

Random walk on IIC satisfies AO conjecture $(d_s = 4/3)$, and behaves subdiffusively [Kozma/Nachmias 2009], e.g. \mathbb{P}_{IIC} -a.s.,

$$\lim_{n\to\infty} \frac{\log E_0^{\omega}(\tau_n)}{\log n} = 3.$$

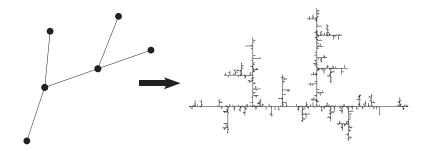
See also [Heydenreich/van der Hofstad/Hulshof 2014].

CRITICAL GALTON-WATSON TREES

Let T_n be a Galton-Watson tree with a critical (mean 1), aperiodic, finite variance offspring distribution, conditioned to have n vertices, then

$$n^{-1/2}T_n \to \mathcal{T}$$

where \mathcal{T} is (up to a deterministic constant) the **Brownian continuum random tree (CRT)** [Aldous 1993], also [Duquesne/Le Gall 2002].



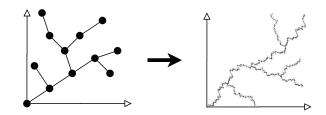
Result includes various combinatorial random trees. Similar results for infinite variance case.

CRITICAL BRANCHING RANDOM WALK

Given a graph tree T with root ρ , let $(\delta(e))_{e \in E(T)}$ be a collection of edge-indexed, i.i.d. random variables. We can use this to embed the vertices of T into \mathbb{R}^d by:

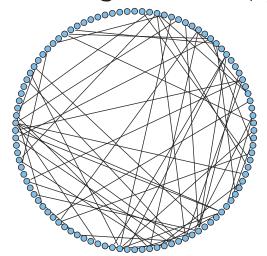
$$v \mapsto \sum_{e \in [[\rho, v]]} \delta(e).$$

If T_n are critical Galton-Watson trees with finite exponential moment offspring distribution, and $\delta(e)$ are centred and satisfy $\mathbb{P}(\delta(e) > x) = o(x^{-4})$, then the corresponding **branching random walk** has an integrated super-Brownian excursion scaling limit [Janson/Marckert 2005].



CRITICAL ERDŐS-RÉNYI RANDOM GRAPH

G(n,p) is obtained via bond percolation with parameter p on the complete graph with n vertices. We concentrate on critical window: $p = n^{-1} + \lambda n^{-4/3}$. e.g. n = 100, p = 0.01:

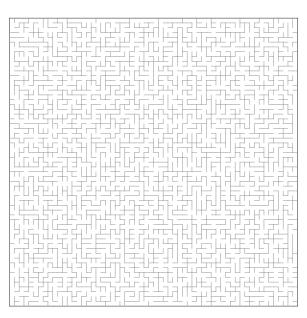


All components have:

- size $\Theta(n^{2/3})$ and surplus $\Theta(1)$ [Erdős/Rényi 1960], [Aldous 1997],
- diameter $\Theta(n^{1/3})$ [Nachmias/Peres 2008].

Moreover, asymptotic structure of components is related to the Brownian CRT [Addario-Berry/Broutin/Goldschmidt 2010].

TWO-DIMENSIONAL UNIFORM SPANNING TREE



Let
$$\Lambda_n := [-n, n]^2 \cap \mathbb{Z}^2$$
.

A subgraph of the lattice is a **spanning tree** of Λ_n if it connects all vertices and has no cycles.

Let $\mathcal{U}^{(n)}$ be a spanning tree of Λ_n selected uniformly at random from all possibilities.

The UST on \mathbb{Z}^2 , \mathcal{U} , is then the local limit of $\mathcal{U}^{(n)}$.

Almost-surely, \mathcal{U} is a spanning tree of \mathbb{Z}^2 . (Forest for d > 4.) Fractal dimension 8/5. SLE-related scaling limit.

[Aldous, Barlow, Benjamini, Broder, Häggström, Kirchoff, Lawler, Lyons, Masson, Pemantle, Peres, Schramm, Werner, Wilson, . . .]

RANDOM WALKS ON RANDOM TREES AND GRAPHS AT CRITICALITY

In the following, the aim is to:

- Introduce techniques for showing random walks on (some of) the above random graphs converge to a diffusion on a fractal;
- Study the properties of these scaling limits.

Brief outline:

- 2. Gromov-Hausdorff and related topologies
- 3. Dirichlet forms and diffusions on real trees
- 4. Traces and time change
- 5. Scaling random walks on graph trees
- 6. Fusing and the critical random graph
- 7. Spatial embeddings

. . .

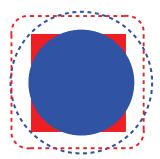
2. GROMOV-HAUSDORFF AND RELATED TOPOLOGIES

HAUSDORFF DISTANCE

The **Hausdorff distance** between two non-empty compact subsets K and K' of a metric space (M, d_M) is defined by

$$\begin{split} d_M^H(K,K') &:= \max \left\{ \sup_{x \in K} d_M(x,K'), \sup_{x' \in K'} d_M(x',K) \right\} \\ &= \inf \left\{ \varepsilon > 0 : K \subseteq K'_{\varepsilon}, K' \subseteq K_{\varepsilon} \right\}, \end{split}$$

where $K_{\varepsilon} := \{x \in M : d_M(x, K) \leq \varepsilon\}.$



If (M, d_M) is complete (resp. compact), then so is the collection of non-empty compact subsets equipped with this metric.

GROMOV-HAUSDORFF DISTANCE

For two non-empty compact metric spaces (K, d_K) , $(K', d_{K'})$, the Gromov-Hausdorff distance between them is defined by setting

$$d_{GH}(K, K') := \inf d_{M}^{H}(\phi(K), \phi'(K')),$$

where the infimum is taken over all metric space (M, d_M) and isometric embeddings $\phi: K \to M$, $\phi': K' \to M$.

The function d_{GH} is a metric on the collection of (isometry classes of) non-empty compact metric spaces. Moreover, the resulting metric space is complete and separable.

For background, see [Gromov 2006, Burago/Burago/Ivanov 2001].

CORRESPONDENCES

A correspondence C is a subset of $K \times K'$ such that for every $x \in K$ there exists an $x' \in K'$ such that $(x, x') \in C$, and vice versa.



The distortion of a correspondence is:

$$\operatorname{dis} \mathcal{C} = \sup \left\{ |d_K(x,y) - d_{K'}(x',y')| : (x,x'), (y,y') \in \mathcal{C} \right\}.$$

An alternative characterisation of the Gromov-Hausdorff distance is then:

$$d_{GH}(K, K') = \frac{1}{2} \inf \operatorname{dis} \mathcal{C}.$$

EXAMPLE: CONVERGENCE OF GW TREES

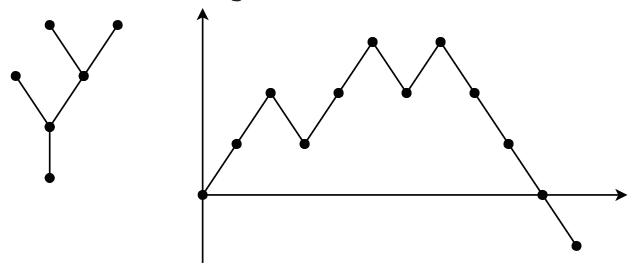
Let T_n be a Galton-Watson tree with a critical (mean 1), aperiodic, finite variance σ^2 offspring distribution, conditioned to have n vertices, then

$$\left(T_n, \frac{\sigma}{2n^{1/2}} d_{T_n}\right) \to (\mathcal{T}, d_{\mathcal{T}})$$

in distribution, with respect to the Gromov-Hausdorff topology. The limiting tree is the Brownian continuum random tree, cf. [Aldous 1993].

DISCRETE CONTOUR FUNCTION

Given an ordered graph tree T, its contour function measures the height of a particle that traces the 'contour' of the tree at unit speed from left to right.



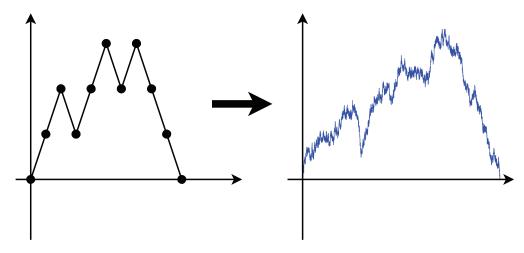
e.g. If a GW tree has a geometric, parameter $\frac{1}{2}$, distribution, then the contour function is precisely a random walk stopped at the first time it hits -1 [Harris 1952]. Conditioning tree to have n vertices equivalent to conditioning the walk to hit -1 at time 2n-1.

CONVERGENCE OF CONTOUR FUNCTIONS

Let $(C_n(t))_{t \in [0,2n-1]}$ be the contour function of T_n . Then

$$\left(\frac{\sigma}{2n^{1/2}}C_{2(n-1)t}\right)_{t\in[0,1]}\to (B_t)_{t\in[0,1]},$$

in distribution in the space $C([0,1],\mathbb{R})$, where the limit process is Brownian excursion normalised to have length one.



See [Marckert/Mokkadem 2003] for a nice general proof.

EXCURSIONS AND REAL TREES

Consider an excursion $(e(t))_{t\in[0,1]}$ — that is, a continuous function that satisfies e(0)=e(1)=0 and is strictly positive for $t\in(0,1)$.

Define a distance on [0,1] by setting

$$d_e(s,t) := e(s) + e(t) - 2 \min_{r \in [s \land t, s \lor t]} e(r).$$

Then we obtain a (compact) real tree (see definition below) by setting $\mathcal{T}_e = [0,1]/\sim$, where $s \sim t$ iff $d_e(s,t) = 0$. [Duquesne/Le Gall 2004]

CONVERGENCE IN GH TOPOLOGY

Let $T = T_B$ – this is the Brownian continuum random tree.

Since $C([0,1],\mathbb{R})$ is separable, we can couple (rescaled) contour processes so that they converge almost-surely. Consider correspondence between T_n and \mathcal{T} given by

$$C = \{([\lceil 2(n-1)t \rceil]_n, [t]) : t \in [0,1]\},\$$

where [t] is the equivalence class of t with respect to \sim , and similarly for $[t]_n$. This satisfies

dis
$$C \le 4 \left\| \frac{\sigma}{2n^{1/2}} C_{2(n-1)} - B \right\|_{\infty} \to 0.$$

Hence

$$d_{GH}\left(\left(T_n, \frac{\sigma}{2n^{1/2}} d_{T_n}\right), (\mathcal{T}, d_{\mathcal{T}})\right) \leq 2 \left\|\frac{\sigma}{2n^{1/2}} C_{2(n-1)} - B\right\|_{\infty} \to 0.$$

INCORPORATING POINTS AND MEASURE

For two non-empty compact pointed metric probability measure spaces (K, d_K, μ_K, ρ_K) , $(K', d_{K'}, \mu_{K'}, \rho_{K'})$, we define a distance by setting $d_{GHP}(K, K')$ to be equal to

$$\inf \left\{ d_M(\phi(\rho_K), \phi'(\rho_{K'})) + d_M^H(\phi(K), \phi'(K')) + d_M^P(\mu_K \circ \phi^{-1}, \mu_{K'} \circ \phi'^{-1}) \right\},$$

where the infimum is taken over all metric space (M, d_M) and isometric embeddings $\phi: K \to M$, $\phi': K' \to M$. Here d_M^P is the Prohorov metric between probability measures on M, i.e.

$$d_M^P(\mu,\nu) = \inf\{\varepsilon : \mu(A) \le \nu(A_\varepsilon) + \varepsilon, \ \nu(A) \le \mu(A_\varepsilon) + \varepsilon, \ \forall A\}.$$

The function d_{GHP} is a metric on the collection of (measure and root preserving isometry classes of) non-empty compact pointed metric probability measure spaces. (Again, complete and separable.) [Abraham/Delmas/Hoscheit 2013]

EXAMPLE: GHP CONVERGENCE OF GW TREES

Let T_n be a Galton-Watson tree with a critical (mean 1), aperiodic, finite variance σ^2 offspring distribution, conditioned to have n vertices. Let μ_{T_n} be the uniform probability measure on T_n , and ρ_{T_n} its root. Then

$$\left(T_n, \frac{\sigma}{2n^{1/2}} d_{T_n}, \frac{1}{n} \mu_{T_n}, \rho_{T_n}\right) \to (\mathcal{T}, d_{\mathcal{T}}, \mu_{\mathcal{T}}, \rho_{\mathcal{T}})$$

in distribution, with respect to the topology induced by d_{GHP} . The limiting tree is the Brownian continuum random tree. In the excursion construction $\rho_{\mathcal{T}} = [0]$, and

$$\mu_{\mathcal{T}} = \lambda \circ p^{-1},$$

where λ is Lebesgue measure on [0,1] and $p:t\mapsto [t]$ is the canonical projection.

PROOF IDEA

Consider two length one excursions e and f. As before, define a correspondence $\mathcal{C}=\{([t]_e,[t]_f): t\in [0,1]\}$, and note that $\mathrm{dis}\,\mathcal{C}\leq 4\,\|e-f\|_{\infty}$. Let $M=\mathcal{T}_e\sqcup\mathcal{T}_f$, with metric d_M equal to $d_{\mathcal{T}_e}$, $d_{\mathcal{T}_f}$ on \mathcal{T}_e , \mathcal{T}_f resp., and

 $d_M(x,x')=\inf\{d_{\mathcal{T}_e}(x,y)+\tfrac{1}{2}\mathrm{dis}\,\mathcal{C}+d_{\mathcal{T}_f}(y',x'):\;(y,y')\in\mathcal{C}\},$ for $x\in\mathcal{T}_e,\;x'\in\mathcal{T}_f.$ Then

$$d_M([0]_e,[0]_f) = \frac{1}{2} \operatorname{dis} \mathcal{C} = d_M^H(\mathcal{T}_e,\mathcal{T}_f).$$

Moreover, if A is a measurable subset of \mathcal{T}_e and $B=p_f(p_e^{-1}(A))\subseteq \mathcal{T}_f$, then $B\subseteq A_\varepsilon$ for $\varepsilon>\frac{1}{2}\mathrm{dis}\,\mathcal{C}$ and

$$\mu_{\mathcal{T}_e}(A) \leq \mu_{\mathcal{T}_f}(B) \leq \mu_{\mathcal{T}_e}(A_{\varepsilon}).$$

By symmetry, it follows that

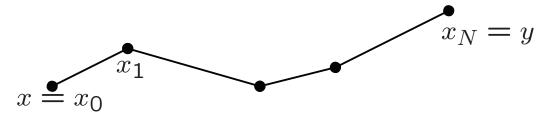
$$d_M^P(\mu_{\mathcal{T}_e}, \mu_{\mathcal{T}_f}) \leq \frac{1}{2} \mathrm{dis} \, \mathcal{C}.$$

3.	DIRICHLET	FORMS AND	DIFFUSIONS	ON REAL		
TREES						

REAL TREES

A **compact real tree** $(\mathcal{T}, d_{\mathcal{T}})$ is an arcwise-connected compact topological space containing no subset homeomorphic to the circle. Moreover, the unique arc between two points x, y is isometric to $[0, d_{\mathcal{T}}(x, y)]$. (cf. compact metric trees [Athreya/Lohr/Winter].)

In particular, the metric $d_{\mathcal{T}}$ on a real tree is additive along paths, i.e. if $x=x_0,x_1,\ldots,x_N=y$ appear in order along an arc



then

$$d_{\mathcal{T}}(x,y) = \sum_{i=1}^{N} d_{\mathcal{T}}(x_{i-1}, x_i).$$

APPROACH FOR CONSTRUCTING A DIFFUSION

Given a compact real tree $(\mathcal{T}, d_{\mathcal{T}})$ and finite Borel measure $\mu^{\mathcal{T}}$ of full support, we aim to construct a quadratic form $\mathcal{E}^{\mathcal{T}}$ that is a local, regular Dirichlet form on $L^2(\mu^{\mathcal{T}})$.

Then, through the standard association

$$\mathcal{E}^{\mathcal{T}}(f,g) = -\int_{\mathcal{T}} (\Delta_{\mathcal{T}} f) g d\mu^{\mathcal{T}} \iff P_t^{\mathcal{T}} = e^{t\Delta_{\mathcal{T}}},$$

define Brownian motion on $(\mathcal{T}, d_{\mathcal{T}}, \mu^{\mathcal{T}})$ to be the Markov process with generator $\Delta_{\mathcal{T}}$.

We follow the construction of [Athreya/Eckhoff/Winter 2013], see also [Krebs 1995] and [Kigami 1995].

DIRICHLET FORM DEFINITION

Let $(\mathcal{T}, d_{\mathcal{T}})$ be a compact real tree, and $\mu^{\mathcal{T}}$ be a finite Borel measure of full support. A **Dirichlet form** $(\mathcal{E}^{\mathcal{T}}, \mathcal{F}^{\mathcal{T}})$ on $L^2(\mu^{\mathcal{T}})$ is a bilinear map $\mathcal{F}^{\mathcal{T}} \times \mathcal{F}^{\mathcal{T}} \to \mathbb{R}$ that is:

- symmetric, i.e. $\mathcal{E}^{\mathcal{T}}(f,g) = \mathcal{E}^{\mathcal{T}}(g,f)$,
- non-negative, i.e. $\mathcal{E}^{\mathcal{T}}(f,f) \geq 0$,
- Markov, i.e. if $f \in \mathcal{F}^{\mathcal{T}}$, then so is $\bar{f} := (0 \lor f) \land 1$ and $\mathcal{E}^{\mathcal{T}}(\bar{f},\bar{f}) \leq \mathcal{E}^{\mathcal{T}}(f,f)$,
- ullet closed, i.e. $\mathcal{F}^{\mathcal{T}}$ is complete w.r.t.

$$\mathcal{E}_1^{\mathcal{T}}(f,f) := \mathcal{E}^{\mathcal{T}}(f,f) + \int_{\mathcal{T}} f(x)^2 \mu^{\mathcal{T}}(dx),$$

• dense, i.e. $\mathcal{F}^{\mathcal{T}}$ is dense in $L^2(\mu^{\mathcal{T}})$.

It is **regular** if $\mathcal{F}^{\mathcal{T}} \cap C(\mathcal{T})$ is dense in $\mathcal{F}^{\mathcal{T}}$ w.r.t. $\mathcal{E}_1^{\mathcal{T}}$, and dense in $C(\mathcal{T})$ w.r.t. $\|\cdot\|_{\infty}$.

ASSOCIATION WITH SEMIGROUP

[Fukushima/Oshima/Takeda 2011, Sections 1.3-1.4] Let $(P_t^{\mathcal{T}})_{t\geq 0}$ be a strongly continuous $\mu^{\mathcal{T}}$ -symmetric Markovian semigroup on $L^2(\mu^{\mathcal{T}})$. For $f\in L^2(\mu^{\mathcal{T}})$, define

$$\mathcal{E}_t^{\mathcal{T}}(f,f) := t^{-1} \int_{\mathcal{T}} (f - P_t^{\mathcal{T}} f) f d\mu^{\mathcal{T}}.$$

This is non-negative and non-decreasing in t. Let

$$\mathcal{E}^{\mathcal{T}}(f,f) := \lim_{t \downarrow 0} \mathcal{E}^{\mathcal{T}}_t(f,f), \qquad \mathcal{F}^{\mathcal{T}} := \left\{ f \in L^2(\mu^{\mathcal{T}}) : \lim_{t \downarrow 0} \mathcal{E}^{\mathcal{T}}_t(f,f) < \infty \right\}.$$

Then $(\mathcal{E}^{\mathcal{T}}, \mathcal{F}^{\mathcal{T}})$ is a Dirichlet form on $L^2(\mu^{\mathcal{T}})$. Moreover, if $\Delta_{\mathcal{T}}$ is the infinitesimal generator of $(P_t^{\mathcal{T}})_{t\geq 0}$, then $\mathcal{D}(\Delta_{\mathcal{T}})\subseteq \mathcal{F}^{\mathcal{T}}$, $\mathcal{D}(\Delta_{\mathcal{T}})$ is dense in $L^2(\mu^{\mathcal{T}})$ and

$$\mathcal{E}^{\mathcal{T}}(f,g) = -\int_{\mathcal{T}} (\Delta_{\mathcal{T}} f) g d\mu^{\mathcal{T}}, \qquad \forall f \in \mathcal{D}(\Delta_{\mathcal{T}}), \ g \in \mathcal{F}^{\mathcal{T}}.$$

Conversely, if $(\mathcal{E}^{\mathcal{T}}, \mathcal{F}^{\mathcal{T}})$ is a Dirichlet form on $L^2(\mu^{\mathcal{T}})$, then there exists a strongly continuous $\mu^{\mathcal{T}}$ -symmetric Markovian semigroup on $L^2(\mu^{\mathcal{T}})$ whose generator satisfies the above.

DIRICHLET FORMS ON GRAPHS

Let G = (V(G), E(G)) be a finite graph. Let $\lambda^G = (\lambda_e^G)_{e \in E(G)}$ be a collection of edge weights, $\lambda_e^G \in (0, \infty)$.

Define a quadratic form on G by setting

$$\mathcal{E}^{G}(f,g) = \frac{1}{2} \sum_{x,y:x \sim y} \lambda_{xy}^{G} (f(x) - f(y)) (g(x) - g(y)).$$

Note that, for any finite measure μ^G on V(G) (of full support), \mathcal{E}^G is a Dirichlet form on $L^2(\mu^G)$, and

$$\mathcal{E}^{G}(f,g) = -\sum_{x \in V(G)} (\Delta_{G}f)(x)g(x)\mu^{G}(\{x\}),$$

where

$$(\Delta_G f)(x) := \frac{1}{\mu^G(\{x\})} \sum_{y: y \sim x} \lambda_{xy}^G(f(y) - f(x)).$$

A FIRST EXAMPLE FOR A REAL TREE

For $(\mathcal{T}, d_{\mathcal{T}}) = ([0, 1], \text{Euclidean})$ and μ be a finite Borel measure of full support on [0, 1]. Let λ be Lebesgue measure on [0, 1], and define

$$\mathcal{E}(f,g) = \int_0^1 f'(x)g'(x)\lambda(dx), \qquad \forall f, g \in \mathcal{F},$$

where $\mathcal{F} = \{f \in C([0,1]) : f \text{ is abs. cont. and } f' \in L^2(\lambda)\}$. Then $(\mathcal{E}, \mathcal{F})$ is a regular Dirichlet form on $L^2(\mu)$. Note that

$$\mathcal{E}(f,g) = -\int_0^1 (\Delta f)(x)g(x)\mu(dx), \qquad \forall f \in \mathcal{D}(\Delta), \ g \in \mathcal{F},$$

where $\Delta f = \frac{d}{d\mu} \frac{df}{dx}$, and $\mathcal{D}(\Delta)$ contains those f such that: f' exists and df' is abs. cont. w.r.t. μ , $\Delta f \in L^2(\mu)$, and f'(0) = f'(1) = 0.

If $\mu = \lambda$, then the Markov process naturally associated with Δ is reflected Brownian motion on [0,1].

GRADIENT ON REAL TREES

Let $(\mathcal{T}, d_{\mathcal{T}})$ be a compact real tree, with root $\rho_{\mathcal{T}}$.

Let $\lambda^{\mathcal{T}}$ be the 'length measure' on \mathcal{T} , and define orientation-sensitive integration with respect to $\lambda^{\mathcal{T}}$ by

$$\int_{x}^{y} g(z)\lambda^{\mathcal{T}}(dz) = \int_{b_{\mathcal{T}}(\rho_{\mathcal{T}},x,y)}^{y} g(z)\lambda^{\mathcal{T}}(dz) - \int_{b_{\mathcal{T}}(\rho_{\mathcal{T}},x,y)}^{x} g(z)\lambda^{\mathcal{T}}(dz).$$

Write

 $A = \{ f \in C(T) : f \text{ is locally absolutely continuous} \}.$

Proposition. If $f \in \mathcal{A}$, then there exists a unique function $g \in L^1_{loc}(\lambda^T)$ such that

$$f(y) - f(x) = \int_{x}^{y} g(z) \lambda^{\mathcal{T}}(dz).$$

We say $\nabla_T f = g$.

DIRICHLET FORMS ON REAL TREES

Let $(\mathcal{T}, d_{\mathcal{T}}, \rho_{\mathcal{T}})$ be a compact, rooted real tree, and $\mu^{\mathcal{T}}$ a finite Borel measure on \mathcal{T} with full support. Define

$$\mathcal{F}^{\mathcal{T}} := \left\{ f \in \mathcal{A} : \nabla_{\mathcal{T}} f \in L^2(\lambda^{\mathcal{T}}) \right\} \left(\subseteq L^2(\mu^{\mathcal{T}}) \right).$$

For $f, g \in \mathcal{F}^{\mathcal{T}}$, set

$$\mathcal{E}^{\mathcal{T}}(f,g) = \int_{\mathcal{T}} \nabla_{\mathcal{T}} f(x) \nabla_{\mathcal{T}} g(x) \lambda^{\mathcal{T}}(dx).$$

Proposition. $(\mathcal{E}^{\mathcal{T}}, \mathcal{F}^{\mathcal{T}})$ is a local, regular Dirichlet form on $L^2(\mu^{\mathcal{T}})$.

NB. By saying the Dirichlet form is local, it is meant that

$$\mathcal{E}^{\mathcal{T}}(f,g) = 0$$

whenever the support of f and g are disjoint.

BROWNIAN MOTION ON REAL TREES

Let $(\mathcal{T}, d_{\mathcal{T}}, \rho_{\mathcal{T}})$ be a compact, rooted real tree, and $\mu^{\mathcal{T}}$ a finite Borel measure on \mathcal{T} with full support.

From the standard theory above, there is a non-positive self-adjoint operator $\Delta_{\mathcal{T}}$ on $L^2(\mu^{\mathcal{T}})$ with $\mathcal{D}(\Delta_{\mathcal{T}}) \subseteq \mathcal{F}^{\mathcal{T}}$ and

$$\mathcal{E}^{\mathcal{T}}(f,g) = -\int_{\mathcal{T}} (\Delta_{\mathcal{T}} f)(x) g(x) \mu^{\mathcal{T}}(dx),$$

for every $f \in \mathcal{D}(\Delta_{\mathcal{T}})$, $g \in \mathcal{F}^{\mathcal{T}}$.

We define **Brownian motion** on $(\mathcal{T}, d_{\mathcal{T}}, \mu^{\mathcal{T}})$ to be the Markov process

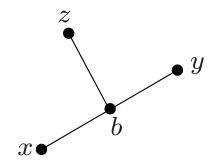
$$\left(\left(X_{t}^{\mathcal{T}}\right)_{t\geq0},\left(P_{x}^{\mathcal{T}}\right)_{x\in\mathcal{T}}\right)$$

with semigroup $P_t^{\mathcal{T}} = e^{t\Delta_{\mathcal{T}}}$. Since $(\mathcal{E}^{\mathcal{T}}, \mathcal{F}^{\mathcal{T}})$ is local and regular, this is a diffusion.

PROPERTIES OF LIMITING PROCESS

Hitting probabilities: For $x, y, z \in \mathcal{T}$,

$$P_z^{\mathcal{T}}(\tau_x < \tau_y) = \frac{d_{\mathcal{T}}(b_{\mathcal{T}}(x, y, z), y)}{d_{\mathcal{T}}(x, y)}.$$



Occupation density: For $x, y \in \mathcal{T}$,

$$E_x^{\mathcal{T}} \int_0^{\tau_y} f(X_s^{\mathcal{T}}) ds = \int_{\mathcal{T}} f(x) d_{\mathcal{T}}(b_{\mathcal{T}}(x, y, z), y) \mu^{\mathcal{T}}(dz).$$

[cf. Aldous 1991]

RESISTANCE CHARACTERISATION: GRAPHS

As above, let G = (V(G), E(G)) be a finite graph, with edge weights $\lambda^G = (\lambda_e^G)_{e \in E(G)}$.

Suppose we view G as an electrical network with edges assigned conductances according to λ^G . Then the electrical resistance between x and y is given by

$$R_G(x,y)^{-1} = \inf \left\{ \mathcal{E}^G(f,f) : f(x) = 1, f(y) = 0 \right\}.$$

 R_G is a metric on V(G), e.g. [Tetali 1991], and characterises the weights (and therefore the Dirichlet form) uniquely [Kigami 1995].

For a graph tree T, one has

$$R_T(x,y) = d_T(x,y),$$

where d_T is the weighted shortest path metric, with edges weighted according to $(1/\lambda_e^G)_{e \in E(G)}$.

RESISTANCE CHARACTERISATION: REAL TREES

Again, let $(\mathcal{T}, d_{\mathcal{T}}, \rho_{\mathcal{T}})$ be a compact, rooted real tree, and $\mu^{\mathcal{T}}$ a finite Borel measure on \mathcal{T} with full support.

Similarly to the graph case, define the resistance on ${\mathcal T}$ by

$$R_{\mathcal{T}}(x,y)^{-1} = \inf \left\{ \mathcal{E}^{\mathcal{T}}(f,f) : f \in \mathcal{F}^{\mathcal{T}}, f(x) = 1, f(y) = 0 \right\}.$$

One can check that $R_{\mathcal{T}} = d_{\mathcal{T}}$. By results of [Kigami 1995] on 'resistance forms', it is possible to check that this property characterises $(\mathcal{E}^{\mathcal{T}}, \mathcal{F}^{\mathcal{T}})$ uniquely amongst the collection of regular Dirichlet forms on $L^2(\mu^{\mathcal{T}})$.

Note that, for all $f \in \mathcal{F}_{\mathcal{T}}$,

$$|f(x) - f(y)|^2 \le \mathcal{E}_{\mathcal{T}}(f, f) d_{\mathcal{T}}(x, y).$$

PROOF OF OCCUPATION DENSITY FORMULA

Let $g(z) = g^y(x, z) = d_T(b_T(x, y, z), y)$, then

$$\nabla g = \mathbf{1}_{[[b_{\mathcal{T}}(\rho_{\mathcal{T}}, x, y), x]]}(z) - \mathbf{1}_{[[b_{\mathcal{T}}(\rho_{\mathcal{T}}, x, y), y]]}(z).$$

And for $h \in \mathcal{F}_{\mathcal{T}}$ with h(y) = 0,

$$\mathcal{E}_{\mathcal{T}}(g,h) = \int_{b_{\mathcal{T}}(\rho_{\mathcal{T}},x,y)}^{x} \nabla h(z) \lambda^{\mathcal{T}}(dz) - \int_{b_{\mathcal{T}}(\rho_{\mathcal{T}},x,y)}^{y} \nabla h(z) \lambda^{\mathcal{T}}(dz) = h(x).$$

Hence, if $Gf(x) := \int_{\mathcal{T}} g^y(x,z) f(z) \mu^{\mathcal{T}}(dz)$, then

$$\mathcal{E}_{\mathcal{T}}(Gf, h) = \int_{\mathcal{T}} f(z)h(z)\mu^{\mathcal{T}}(dz).$$

Since the resolvent is unique, to complete the proof it is enough to note that

$$\tilde{G}f(x) := E_x^{\mathcal{T}} \int_0^{\tau_y} f(X_s^{\mathcal{T}}) ds = \int_0^{\infty} P_t^{\mathcal{T} \setminus \{y\}} f(x) dt$$

also satisfies the previous identity.

4.	TRACES	SAND	TIME	CHANGE

TRACE OF THE DIRICHLET FORM

Through this section, let $(\mathcal{T}, d_{\mathcal{T}}, \rho_{\mathcal{T}})$ be a compact, rooted real tree, and $\mu^{\mathcal{T}}$ a finite Borel measure on \mathcal{T} with full support.

Suppose \mathcal{T}' is a non-empty subset of \mathcal{T} .

Define the trace of $(\mathcal{E}^{\mathcal{T}}, \mathcal{F}^{\mathcal{T}})$ on \mathcal{T}' by setting:

$$\operatorname{Tr}\left(\mathcal{E}^{\mathcal{T}}|\mathcal{T}'\right)(g,g) := \inf\left\{\mathcal{E}^{\mathcal{T}}(f,f) : f \in \mathcal{F}^{\mathcal{T}}, f|_{\mathcal{T}'} = g\right\},$$

where the domain of $Tr(\mathcal{E}^{\mathcal{T}}|\mathcal{T}')$ is precisely the collection of functions for which the right-hand side is finite.

Theorem. If \mathcal{T}' is closed, and $\mu^{\mathcal{T}'}$ is a finite Borel measure on $(\mathcal{T}', d_{\mathcal{T}})$ with full support, then $\operatorname{Tr}\left(\mathcal{E}^{\mathcal{T}}|\mathcal{T}'\right)$ is a regular Dirichlet form on $L^2(\mu^{\mathcal{T}'})$ [Fukushima/Oshima/Takeda 2011].

APPLICATION TO REAL TREES

Suppose $\mathcal{T}'\subseteq\mathcal{T}$ is closed and arcwise-connected (so that $(\mathcal{T}',d_{\mathcal{T}})$ is a real tree), equipped with a finite Borel measure $\mu^{\mathcal{T}'}$ of full support. We claim that

$$\mathcal{E}^{\mathcal{T}'} = \operatorname{Tr}\left(\mathcal{E}^{\mathcal{T}}|\mathcal{T}'\right).$$

Indeed, both are regular Dirichlet forms on $L^2(\mu^{\mathcal{T}'})$, and

$$\inf \left\{ \text{Tr} \left(\mathcal{E}^{\mathcal{T}} | \mathcal{T}' \right) (g, g) : g(x) = 1, \ g(y) = 0 \right\}$$

$$= \inf \left\{ \inf \left\{ \mathcal{E}^{\mathcal{T}} (f, f) : f \in \mathcal{F}^{\mathcal{T}}, \ f|_{\mathcal{T}'} = g \right\} : g(x) = 1, \ g(y) = 0 \right\}$$

$$= \inf \left\{ \mathcal{E}^{\mathcal{T}} (f, f) : f \in \mathcal{F}^{\mathcal{T}}, \ f(x) = 1, \ f(y) = 0 \right\}$$

$$= d_{\mathcal{T}} (x, y)^{-1}.$$

In particular, $\text{Tr}(\mathcal{E}^{\mathcal{T}}|\mathcal{T}')$ is the form naturally associated with Brownian motion on $(\mathcal{T}', d_{\mathcal{T}}, \mu^{\mathcal{T}'})$.

TIME CHANGE

Given a finite Borel measure ν with support $S \subseteq \mathcal{T}$, let $(A_t)_{t\geq 0}$ be the positive continuous additive functional with Revuz measure ν . For example, if $X^{\mathcal{T}}$ admits jointly continuous local times $(L_t(x))_{x\in\mathcal{T},t\geq 0}$, i.e.

$$\int_0^t f(X_s^{\mathcal{T}}) ds = \int_{\mathcal{T}} f(x) L_t(x) \mu_{\mathcal{T}}(dx), \qquad \forall f \in C(\mathcal{T}),$$

then

$$A_t = \int_{\mathcal{S}} L_t(x) \nu(dx).$$

Set

$$\tau(t) := \inf\{s > 0 : A_s > t\}.$$

Then $(X_{\tau(t)}^{\mathcal{T}})_{t\geq 0}$ is the Markov process naturally associated with $\mathrm{Tr}\left(\mathcal{E}^{\mathcal{T}}|\mathcal{S}\right)$, considered as a regular Dirichlet form on $L^2(\nu)$.

APPLICATION TO FINITE SUBSETS

Let V be a fine finite set of \mathcal{T} . If we define $\mathcal{E}^V = \text{Tr}(\mathcal{E}^{\mathcal{T}}|V)$, then one can check for any finite measure μ^V on V with full support

$$\mathcal{E}^{V}(f,g) = \frac{1}{2} \sum_{x,y:x \sim y} \frac{1}{d_{\mathcal{T}}(x,y)} (f(x) - f(y)) (g(x) - g(y))$$

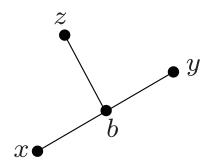
= $-\sum_{x} (\Delta f)(x) g(x) \mu^{V}(\{x\}),$

where

$$\Delta f(x) := \sum_{y:y\sim x} \frac{1}{\mu^V(\{x\})d_{\mathcal{T}}(x,y)} (f(y) - f(x)).$$

PROOF OF HITTING PROBABILITIES FORMULA

Let $V = \{x, y, z, b_{\mathcal{T}}(x, y, z)\}.$

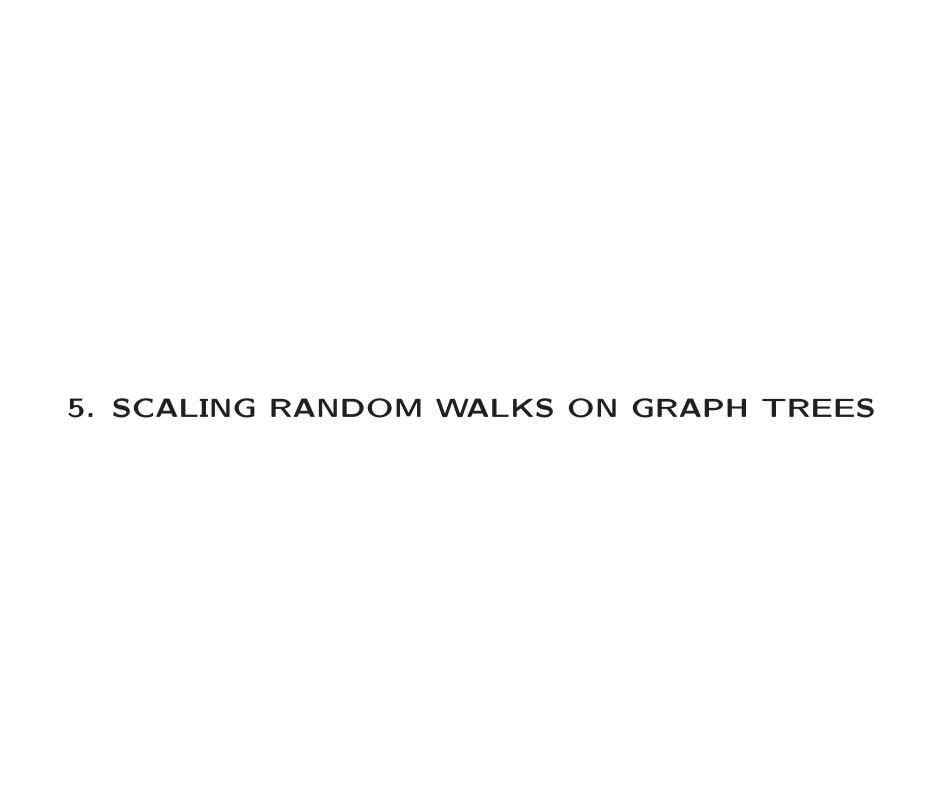


For any μ^V such that $\mu(\{v\}) \in (0,\infty)$ for all $v \in V$, we have $P_x^{\mathcal{T}}$ -a.s.,

$$A_t = \int_0^t \mathbf{1}_V(X_s^T) dA_s, \quad \inf\{t : A_t > 0\} = \inf\{t : X_t^T \in V\}.$$

[Fukushima/Oshima/Takeda 2011] It follows that the hitting distributions of $X_t^V = X_{\tau(t)}^{\mathcal{T}}$ and $X^{\mathcal{T}}$ are the same. Thus

$$P_z^{\mathcal{T}}(\tau_x < \tau_y) = P_z^{V}(\tau_x < \tau_y) = \frac{d_{\mathcal{T}}(b_{\mathcal{T}}(x, y, z), y)}{d_{\mathcal{T}}(x, y)}.$$



AIM

Let $(T_n)_{n\geq 1}$ be a sequence of finite graph trees, and μ_{T_n} the counting measure on $V(T_n)$.

(A1) There exist null sequences $(a_n)_{n\geq 1}$, $(b_n)_{n\geq 1}$ such that

$$(T_n, a_n d_{T_n}, b_n \mu_{T_n}, \rho_{T_n}) \to (\mathcal{T}, d_{\mathcal{T}}, \mu_{\mathcal{T}}, \rho_{\mathcal{T}})$$

with respect to the pointed Gromov-Hausdorff-Prohorov topology.

We aim to show that the corresponding simple random walks X^{T_n} , started from ρ_{T_n} , converge to Brownian motion $X^{\mathcal{T}}$ on $(\mathcal{T}, d_{\mathcal{T}}, \mu_{\mathcal{T}})$, started from $\rho_{\mathcal{T}}$.

ASSUMPTION ON LIMIT

From the convergence assumption (A1) we have that: $(\mathcal{T}, d_{\mathcal{T}}, \mu_{\mathcal{T}}, \rho_{\mathcal{T}})$ is a compact real tree, equipped with a finite Borel measure $\mu^{\mathcal{T}}$, and distinguished point $\rho_{\mathcal{T}}$.

(A2) There exists a constant c > 0 such that

$$\liminf_{r\to 0} \inf_{x\in\mathcal{T}} r^{-c} \mu_{\mathcal{T}}(B_{\mathcal{T}}(x,r)) > 0.$$

This property is not necessary, but allows a sample path proof.

In particular, it ensures that $X^{\mathcal{T}}$ admits jointly continuous local times $(L_t(x))_{x \in \mathcal{T}, t > 0}$, i.e.

$$\int_0^t f(X_s^{\mathcal{T}}) ds = \int_{\mathcal{T}} f(x) L_t(x) \mu_{\mathcal{T}}(dx), \qquad \forall f \in C(\mathcal{T}).$$

A NOTE ON THE TOPOLOGY

The assumption (A1) is equivalent to there existing isometric embeddings of $(T_n, d_{T_n})_{n \geq 1}$ and $(\mathcal{T}, a_n d_{\mathcal{T}})$ into the same metric space (M, d_M) such that:

$$d_M(\rho_{T_n}, \rho_{\mathcal{T}}) \to 0, \qquad d_M^H(T_n, \mathcal{T}) \to 0, \qquad d_M^P(b_n \mu_{T_n}, \mu_{\mathcal{T}}) \to 0.$$

Indeed, one can take

$$M = T_1 \sqcup T_2 \sqcup \cdots \sqcup \mathcal{T}$$

equipped with suitable metric (cf. end of Section 2).

We will identify the various objects with their embeddings into M, and show convergence of processes in the space $D(\mathbb{R}_+, M)$.

PROJECTIONS

Let $(x_i)_{i\geq 1}$ be a dense sequence in \mathcal{T} , and set

$$\mathcal{T}(k) := \cup_{i=1}^{k} [[\rho_{\mathcal{T}}, x_i]],$$

where $[[\rho_{\mathcal{T}}, x_i]]$ is the unique path from $\rho_{\mathcal{T}}$ to x_i in \mathcal{T} .

Let $\phi_k : \mathcal{T} \to \mathcal{T}(k)$ be the map such that $\phi_k(x)$ is the nearest point of $\mathcal{T}(k)$ to x. (We call this the **projection** of \mathcal{T} onto $\mathcal{T}(k)$.)

For each n, choose $(x_i^n)_{i\geq 1}$ in T_n such that

$$d_M(x_i^n, x_i) \to 0,$$

and define the subtree $T_n(k)$ and projection $\phi_{n,k}: T_n \to T_n(k)$ similarly to above.

CONVERGENCE CRITERIA

It is possible to check that the assumption (A1) is equivalent to the following two conditions holding:

1. Convergence of finite dimensional distributions: for each k,

$$d_M^H(T_n(k), \mathcal{T}(k)) \to 0, \qquad d_M^P(b_n \mu_{n,k}, \mu_k) \to 0,$$

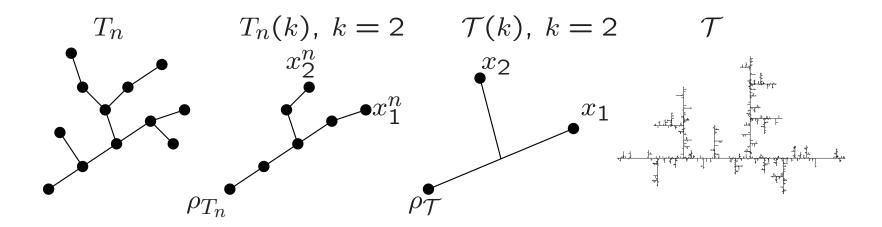
where
$$\mu_{n,k} := \mu_{T_n} \circ \phi_{n,k}^{-1}$$
 and $\mu_k := \mu_{\mathcal{T}} \circ \phi_k^{-1}$.

2. Tightness:

$$\lim_{k\to\infty} \limsup_{n\to\infty} d_M^H(T_n(k), T_n) = 0.$$

STRATEGY

Select $T_n(k)$ and $\mathcal{T}(k)$ as above:



Step 1: Show Brownian motion $X^{\mathcal{T}(k)}$ on $(\mathcal{T}(k), d_{\mathcal{T}}, \mu_k)$ converges to $X^{\mathcal{T}}$.

Step 2: For each k, construct processes $X^{T_n(k)}$ on graph subtrees that converge to $X^{\mathcal{T}(k)}$.

Step 3: Show $X^{T_n(k)}$ are close to X^{T_n} as $k \to \infty$.

STEP 1 APPROXIMATION OF LIMITING DIFFUSION

TIME CHANGE CONSTRUCTION

Define

$$A_t^k := \int_{\mathcal{T}} L_t(x) \mu_k(dx),$$

set

$$\tau_k(t) = \inf\{s : A_s^k > t\}.$$

Then, we recall from Section 4, $X_{ au_k(t)}^{\mathcal{T}}$ is the Markov process naturally associated with

$$\operatorname{Tr}\left(\mathcal{E}^{\mathcal{T}}|\mathcal{T}(k)\right),$$

(note that $supp \mu_k = \mathcal{T}(k)$), considered as a Dirichlet form on $L^2(\mu_k)$.

Recall also that the latter process is Brownian motion $X^{\mathcal{T}(k)}$ on $(\mathcal{T}(k), d_{\mathcal{T}}, \mu_k)$.

CONVERGENCE OF DIFFUSIONS

By construction

$$d_M^P(\mu_k, \mu_{\mathcal{T}}) \leq \sup_{x \in \mathcal{T}} d_M(\phi_k(x), x) = d_M^H(\mathcal{T}(k), \mathcal{T}) \to 0.$$

Hence, applying the continuity of local times:

$$A_t^k = \int_{\mathcal{T}} L_t(x) \mu_k(dx) \to \int_{\mathcal{T}} L_t(x) \mu_{\mathcal{T}}(dx) = t,$$

uniformly over compact intervals.

Thus, we also have that $\tau_k(t) \to t$ uniformly on compacts. And, by continuity,

$$X_t^{\mathcal{T}(k)} = X_{\tau_k(t)}^{\mathcal{T}} \to X_t^{\mathcal{T}},$$

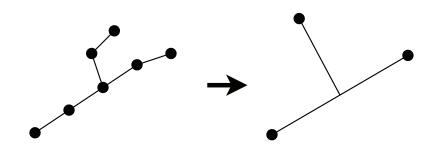
uniformly on compacts.

STEP 2 CONVERGENCE OF WALKS ON FINITE TREES

CONVERGENCE OF WALKS ON FINITE TREES EQUIPPED WITH LENGTH MEASURE

For fixed k,

$$T_n(k) \to \mathcal{T}(k)$$
.



If $J^{n,k}$ is the simple random walk on $T_n(k)$, then

$$\left(J_{tE_{n,k}/a_n}^{n,k}\right)_{t\geq 0} \to \left(X_t^{\mathcal{T}(k),\lambda_k}\right)_{t\geq 0},$$

where $E_{n,k}:=\#E(T_n(k))$ and $X^{\mathcal{T}(k),\lambda_k}$ is the Brownian motion on $(\mathcal{T}(k),d_{\mathcal{T}},\lambda_k)$, for λ_k equal to the length measure on $\mathcal{T}(k)$, normalised such that $\lambda_k(\mathcal{T}(k))=1$.

TIME CHANGE FOR LIMIT

For $(L_t^k(x))_{x \in \mathcal{T}(k), t \geq 0}$ the local times of $X^{\mathcal{T}(k), \lambda_k}$, write

$$\widehat{A}_t^k := \int_{\mathcal{T}(k)} L_t^k(x) \mu_k(dx),$$

and set

$$\hat{\tau}_k(t) = \inf\{s : \hat{A}_s^k > t\}.$$

Then

$$\left(X_{\widehat{\tau}_k(t)}^{\mathcal{T}(k),\lambda_k}\right)_{t>0} = \left(X_t^{\mathcal{T}(k)}\right)_{t>0}.$$

TIME CHANGE FOR GRAPHS

Let

$$\widehat{A}_{m}^{n,k} := \sum_{l=0}^{m-1} \frac{2\mu_{n,k}(\{J_{l}^{n,k}\})}{\deg_{n,k}(J_{l}^{n,k})} = \sum_{x \in T_{n}(k)} L_{m}^{n,k}(x)\mu_{n,k}(\{x\}),$$

where

$$L_m^{n,k}(x) := \frac{2}{\deg_{n,k}(x)} \sum_{l=0}^{m-1} \mathbf{1}_{\{J_l^{n,k} = x\}}.$$

If

$$\hat{\tau}^{n,k}(m) := \max\{l : \hat{A}_l^{n,k} \le m\},\$$

then

$$X_m^{T_n(k)} = J_{\widehat{\tau}^{n,k}(m)}^{n,k}$$

is the process with the same jump chain as $J^{n,k}$, and holding times given by $2\mu_{n,k}(\{x\})/\deg_{n,k}(x)$.

CONVERGENCE OF TIME-CHANGED PROCESSES

We have that

$$\left(a_n L_{tE_{n,k}/a_n}^{n,k}(x)\right)_{x \in T_n(k), t \ge 0} \to \left(L_t^k(x)\right)_{x \in \mathcal{T}(k), t \ge 0}, \qquad b_n \mu_{n,k} \to \mu_k.$$

This implies which implies

$$a_n b_n \widehat{A}_{tE_{n,k}/a_n}^{n,k} = a_n b_n \int_{T_n(k)} L_{tE_{n,k}/a_n}^{n,k}(x) \mu_{n,k}(dx)$$

$$\to \int_{T(k)} L_t^k(x) \mu_k(dx)$$

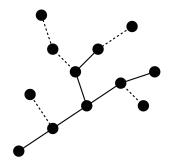
$$= \widehat{A}_t^k.$$

Taking inverses and composing with $J^{n,k}$ and $X^{\mathcal{T}(k),\lambda_k}$ yields

$$X_{t/a_nb_n}^{T_n(k)} = J_{\widehat{\tau}^{n,k}(t/a_nb_n)}^{n,k} \to X_{\widehat{\tau}_k(t)}^{\mathcal{T}(k),\lambda_k} = X_t^{\mathcal{T}(k)}.$$

STEP 3 APPROXIMATING RANDOM WALKS ON WHOLE TREES

PROJECTION OF RANDOM WALK



 $\phi_{n,k}$ is natural projection from T_n to $T_n(k)$.

Clearly

$$\lim_{k \to \infty} \limsup_{n \to \infty} \sup_{t \in [0,T]} d_M \left(X_{t/a_n b_n}^{T_n}, \phi_{n,k}(X_{t/a_n b_n}^{T_n}) \right)$$

$$\leq \lim_{k \to \infty} \limsup_{n \to \infty} \sup_{x \in V(T_n)} d_M(x, \phi_{n,k}(x))$$

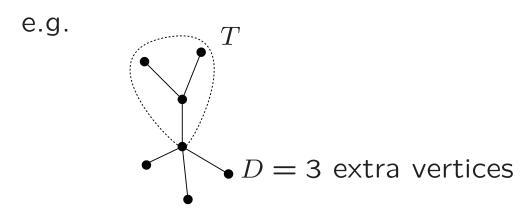
$$= \lim_{k \to \infty} \limsup_{n \to \infty} d_M^H(T_n(k), T_n)$$

$$= 0.$$

Moreover, can couple projected process $\phi_{n,k}(X^{T_n})$ and time-changed process $X^{T_n(k)}$ to have same jump chain $J^{n,k}$. Recall $X^{T_n(k)}$ waits at a vertex x a fixed time $2\mu_{n,k}(\{x\})/\deg_{n,k}(x)$.

ELEMENTARY SIMPLE RANDOM WALK IDENTITY

Let T be a rooted graph tree, and attach D extra vertices at its root, each by a single edge.



If $\alpha(T,D)$ is the expected time for a simple random walk started from the root to hit one of the extra vertices, then

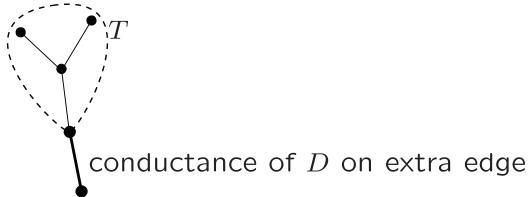
$$\alpha(T, D) = \frac{2\#V(T) - 2 + D}{D}.$$

In particular, if D = 2, then

$$\alpha(T,D) = \#V(T).$$

PROOF

We consider modified graph $G = T \cup \{\rho\}$ obtained by identifying extra vertices into one vertex:



If τ_{ρ}^{+} is the return time to ρ , then

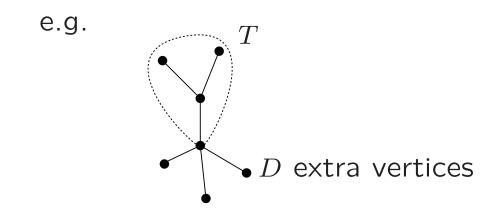
$$\alpha(T,D) + 1 = E_{\rho}^{G} \tau_{\rho}^{+} = \frac{1}{\pi(\rho)},$$

where π is the invariant probability measure of the random walk. In particular, writing $\lambda(v) = \sum_{e: v \in e} \lambda_e$,

$$\pi(\rho) = \frac{\lambda(\rho)}{\sum_{v} \lambda(v)} = \frac{D}{2(D + \#E(T))} = \frac{D}{2(D + \#V(T) - 1)}.$$

SECOND MOMENT ESTIMATE

Again, let T be a rooted graph tree, and attach D extra vertices at its root, each by a single edge.



If $\beta(T,D)$ is the second moment of the time for a simple random walk started from the root to hit one of the extra vertices, then there exists a universal constant c such that

$$\beta(T,D) \le c \left(\#V(T)^2 \times (1+h(T)) + Dh(T) \right),$$

where h(T) is the height of T.

PROOF

Let $G=T\cup\{\rho\}$ be the modified graph as in the previous proof. If $\lambda(G)=\sum_v\lambda(v)=2\sum_e\lambda_e$ and $r(G)=\max_{x,y\in G}R(x,y)$, then we claim

$$P_{\rho}^{G}\left(\tau_{\rho}^{+} \geq a\right) \leq \frac{c_{1}}{r(G)D}e^{-c_{2}a/\lambda(G)r(G)}.$$

Indeed, applying the Markov property repeatedly, we obtain

$$P_{\rho}^{G}\left(\tau_{\rho}^{+} \geq a\right) \leq P_{\rho}^{G}\left(\tau_{\rho}^{+} \geq a/k\right) \left(\max_{x \in V(T)} P_{x}^{G}\left(\tau_{\rho} \geq a/k\right)\right)^{k-1}.$$

For $k = a/2\lambda(G)r(G)$, we have

$$P_{\rho}^{G}\left(\tau_{\rho}^{+} \geq a/k\right) \leq \frac{kE_{\rho}^{G}\tau_{\rho}^{+}}{a} = \frac{1}{2r(G)D},$$

and also, by the commute time identity,

$$\max_{x \in V(T)} P_x^G \left(\tau_x \ge a/k \right) \le \max_{x \in V(T)} \frac{k E_x^G \tau_\rho}{a} \le \max_{x \in V(T)} \frac{k R(x, \rho) \lambda(G)}{a} \le \frac{1}{2}.$$

PROOF (CONT.)

It follows that

$$E_{\rho}^{G}\left((\tau_{\rho}^{+})^{2}\right) \leq \frac{c_{3}\lambda(G)^{2}r(G)}{D}.$$

Since

$$\beta(T,D) = E_{\rho}^{G} \left((\tau_{\rho}^{+} - 1)^{2} \right),$$

we can then use that

$$\lambda(G) = 2(D + \#V(T) - 1), \qquad r(G) \le 2(h(T) + D^{-1})$$

to complete the proof.

CLOSENESS OF CLOCK PROCESSES

Suppose the mth jump of $\phi_{n,k}(X^{T_n})$ happens at $A_m^{n,k}$. Applying the above moment estimates and Kolmogorov's maximum estimate, i.e. if X_i are independent, centred, then

$$P(\max_{l=1,...,m} | \sum_{i=1}^{l} X_i | \ge x) \le x^{-2} \sum_{i=1}^{m} EX_i^2,$$

we deduce

$$\mathbf{P}\left(\max_{m \leq tE_{n,k}/a_n} \left| A_m^{n,k} - \widehat{A}_m^{n,k} \right| \geq \varepsilon/a_n b_n \right) \to \mathbf{0}$$

in probability as n and then k diverge.

CONCLUSION

Let $(T_n)_{n\geq 1}$ be a sequence of finite graph trees.

Suppose that there exist null sequences $(a_n)_{n\geq 1}$, $(b_n)_{n\geq 1}$ such that

$$(T_n, a_n d_{T_n}, b_n \mu_{T_n}, \rho_{T_n}) \to (\mathcal{T}, d_{\mathcal{T}}, \mu_{\mathcal{T}}, \rho_{\mathcal{T}})$$

with respect to the pointed Gromov-Hausdorff-Prohorov topology, and \mathcal{T} satisfies a polynomial lower volume bound.

It is then possible to isometrically embed $(T_n)_{n\geq 1}$ and \mathcal{T} into the same metric space (M,d_M) such that

$$\left(a_n X_{t/a_n b_n}^{T_n}\right)_{t>0} \to \left(X_t^{\mathcal{T}}\right)_{t\geq 0}$$

in distribution in $C(\mathbb{R}_+, M)$, where we assume $X_0^{T_n} = \rho_{T_n}$ for each n, and also $X_0^{\mathcal{T}} = \rho_{\mathcal{T}}$.

REMARKS

- (i) Can extend to locally compact case.
- (ii) Alternative proof given in [Athreya/ Löhr/Winter 2014] (in a slightly more general setting) under the weaker assumption: for each $\delta > 0$,

$$\liminf_{n\to\infty}\inf_{x\in T_n}\mu_{T_n}(B_{T_n}(\rho_{T_n},\delta/a_n))>0.$$

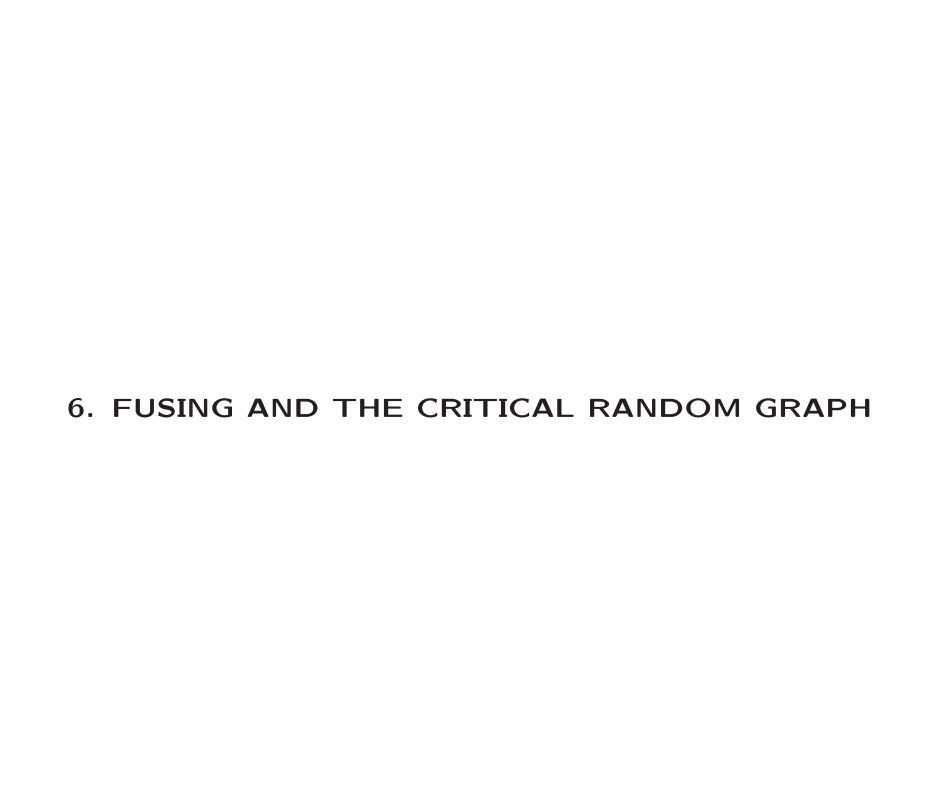
(iii) Embeddings can be described measurably, and chosen so result applies to random trees to give convergence of annealed laws. In particular, if

$$(T_n, a_n d_{T_n}, b_n \mu_{T_n}, \rho_{T_n}) \to (\mathcal{T}, d_{\mathcal{T}}, \mu_{\mathcal{T}}, \rho_{\mathcal{T}})$$

in distribution, then for appropriate embeddings

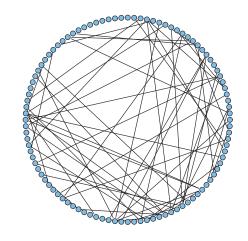
$$\int P_{\rho T_n}^{T_n}((a_n X_{t/a_n b_n}^{T_n})_{t\geq 0} \in \cdot) \mathbb{P}(dT_n) \to \int P_{\rho T}^{\mathcal{T}}((X_t^{\mathcal{T}})_{t\geq 0} \in \cdot) \mathbb{P}(d\mathcal{T}).$$

Applies to critical, finite variance GW trees conditioned on their size, with $a_n = n^{-1/2}$, $b_n = n^{-1}$.



CRITICAL ERDŐS-RÉNYI RANDOM GRAPH (RECALLED)

G(n,p) is obtained via bond percolation with parameter p on the complete graph with n vertices. We concentrate on critical window: $p = n^{-1} + \lambda n^{-4/3}$. e.g. n = 100, p = 0.01:



[Addario-Berry, Broutin, Goldschmidt] Considering the connected components as metric spaces,

$$(n^{-1/3}C_1^n, n^{-1/3}C_2^n, \dots) \to (\mathcal{M}_1, \mathcal{M}_2, \dots),$$

where $(\mathcal{M}_1, \mathcal{M}_2, \dots)$ is a sequence of random metric spaces.

CONDITIONING \mathcal{C}_1^n ON ITS SIZE

For $m \in \mathbb{N}$, can construct $\mathcal{C}_1^n | \{ \# \mathcal{C}_1^n = m \}$ as follows: first, choose an m-vertex random labelled tree T_m^p according to

$$P(T_m^p = T) \propto (1 - p)^{-a(T)},$$

where a(T) is the number of extra edges 'permitted' by T. Then, add extra edges independently with probability p to form G_m^p .

If G is a connected graph with depth-first tree T and surplus s,

$$P(G_m^p = G) \propto (1-p)^{-a(T)} p^s (1-p)^{a(T)-s} = (p/(1-p))^s \propto p^{m-1+s} (1-p)^{\binom{m}{2}-m+1-s} = P(G(m,p) = G).$$

Finally, observe $C_1^n | \{ \# C_1^n = m \} \sim G(m, p) | \{ G(m, p) \text{ connected} \}.$

TILTING VIA THE EXCURSION AREA

In the discrete setting, the 'permitted' extra edges correspond to lattice points under the depth-first walk of the graph tree; the total number of them is (nearly) the area below this function.

In the continuous setting, an analogous construction of \mathcal{M}_1 is possible: first, choose a random excursion \tilde{e} according to the tilted measure

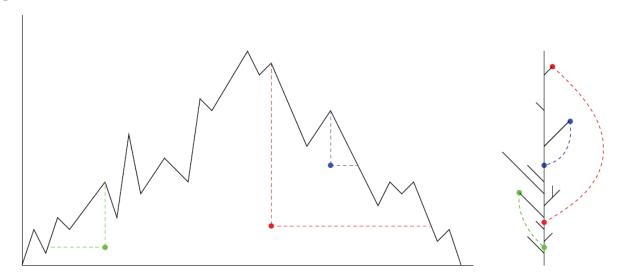
$$P(\tilde{e} \in df) = \frac{P(e \in df) \exp(\int_0^1 f(t)dt)}{E(\exp(\int_0^1 e(t)dt))},$$

where e is the normalised Brownian excursion.

Define $\tilde{\mathcal{T}} := \mathcal{T}_{\tilde{e}}$.

POINT PROCESS DESCRIBING CONNECTIONS

Let $\mathcal P$ be a unit intensity Poisson process on the plane. Points of $\mathcal P$ that lie below the excursion $\tilde e$ describe pairs of vertices to 'glue' together.



Picture produced by Christina Goldschmidt.

A point at (t,x) identifies the vertex v at height $\tilde{e}(t)$ with the vertex at distance x along the path from the root to v.

CRITICAL RANDOM GRAPH SCALING LIMIT [Addario-Berry, Broutin, Goldschmidt]

Up to a random scaling factor depending on λ , the random metric space scaling limit $(\mathcal{M}_1, d_{\mathcal{M}_1})$ of the largest component of the critical random graph is then defined as follows:

Let \mathcal{M}_1 be the image of the natural quotient map ϕ induced by the gluing of pairs of vertices of $\tilde{\mathcal{T}}$ according to \mathcal{P} .

Set $d_{\mathcal{M}_1}$ to be the quotient metric on \mathcal{M}_1 , i.e.

$$d_{\mathcal{M}_1}(\bar{x}, \bar{y}) = \inf \left\{ \sum_{i=1}^k d_{\tilde{\mathcal{T}}}(x_i, y_i) : \bar{x}_1 = \bar{x}, \bar{y}_i = \bar{x}_{i+1}, \bar{y}_k = \bar{y} \right\},$$

where $\bar{x} := \phi(x)$.

FUSING THE DIRICHLET FORM ON $\mathcal T$

Recall \mathcal{M}_1 is obtained by gluing together a finite number of pairs of vertices of \mathcal{T} , and $\phi: \tilde{\mathcal{T}} \to \mathcal{M}_1$ is the natural quotient map.

Let $(\mathcal{E}_{\tilde{\mathcal{T}}}, \mathcal{F}_{\tilde{\mathcal{T}}})$ be the Dirichlet form on $(\tilde{\mathcal{T}}, d_{\tilde{\mathcal{T}}}, \mu^{\tilde{\mathcal{T}}})$.

Define a quadratic form on the glued space by setting

$$\mathcal{E}_{\mathcal{M}_1}(f,f) := \mathcal{E}_{\tilde{\mathcal{T}}}(f \circ \phi, f \circ \phi),$$

for any $f \in \mathcal{F}_{\mathcal{M}_1}$, where

$$\mathcal{F}_{\mathcal{M}_1} := \{ f : \mathcal{M}_1 \to \mathbb{R} : f \circ \phi \in \mathcal{F}_{\tilde{\mathcal{T}}} \}.$$

 $(\mathcal{E}_{\mathcal{M}_1}, \mathcal{F}_{\mathcal{M}_1})$ is a local, regular Dirichlet form on $L^2(\mathcal{M}_1, \mu^{\mathcal{M}_1})$, where $\mu^{\mathcal{M}_1} := \mu^{\tilde{\mathcal{T}}} \circ \phi^{-1}$. We call the corresponding Markov diffusion $X^{\mathcal{M}_1}$ Brownian motion on \mathcal{M}_1 .

A FIRST EXAMPLE OF FUSING

For $(\mathcal{T}, d_{\mathcal{T}}, \mu^{\mathcal{T}}) = ([0, 1], \text{Euclidean}, \text{Lebesgue}),$

$$\mathcal{E}^{\mathcal{T}}(f,f) = \int_{[0,1]} f'(x)^2 dx,$$

and $X^{\mathcal{T}}$ is reflected Brownian motion on [0,1].

If 0 and 1 are 'fused', $(\mathcal{M}, d_{\mathcal{M}})$ is the circle of unit circumference equipped with its usual metric, $\mu^{\mathcal{M}}$ is the one-dimensional Hausdorff measure on this, and

$$\mathcal{E}^{\mathcal{M}}(f,f) = \int_{\mathcal{M}} f'(x)^2 dx.$$

(Note the integral is over the circle). The corresponding process $X^{\mathcal{M}}$ is Brownian motion on the circle.

SCALING LIMIT FOR RANDOM WALKS ON CRITICAL RANDOM GRAPHS

Essentially the same argument as for GW trees works:

- select subgraphs consisting of a finite number of line segments.
- prove convergence on these.
- show these are close to processes of interest.

Let \mathcal{C}_1^n be the largest component of random graph in the critical window, $p=n^{-1}+\lambda n^{-4/3}$, then

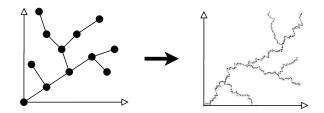
$$\left(n^{-1/3}X_{\lfloor tn\rfloor}^{\mathcal{C}_1^n}\right)_{t\geq 0} \to \left(X_t^{\mathcal{M}_1}\right)_{t\geq 0},$$

in distribution in both a quenched (for almost-every environment) and annealed (averaged over environments) sense.

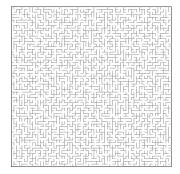
7. SPATIAL EMBEDDINGS	

GRAPH TREES EMBEDDED IN EUCLIDEAN SPACE

Recall from the motivating examples, the branching random walk:



and the uniform spanning tree:



GH TOPOLOGY WITH SPATIAL EMBEDDING

Define \mathbb{T} to be the collection of measured, rooted, spatial trees, i.e.

$$(\mathcal{T}, d_{\mathcal{T}}, \mu_{\mathcal{T}}, \phi_{\mathcal{T}}, \rho_{\mathcal{T}}),$$

where:

- $(\mathcal{T}, d_{\mathcal{T}})$ is a complete and locally compact real tree;
- $\mu_{\mathcal{T}}$ is a locally finite Borel measure on $(\mathcal{T}, d_{\mathcal{T}})$;
- ullet $\phi_{\mathcal{T}}$ is a continuous map from $(\mathcal{T}, d_{\mathcal{T}})$ into \mathbb{R}^d ;
- $\rho_{\mathcal{T}}$ is a distinguished vertex in \mathcal{T} .

On \mathbb{T}_c (compact trees only), define a distance Δ_c by

$$\inf_{\substack{M,\psi,\psi',\mathcal{C}:\\ (\rho_{\mathcal{T}},\rho'_{\mathcal{T}})\in\mathcal{C}}} \left\{ d_{M}^{P}(\mu_{\mathcal{T}}\circ\psi^{-1},\mu'_{\mathcal{T}}\circ\psi'^{-1}) + \sup_{(x,x')\in\mathcal{C}} \left(d_{M}(\psi(x),\psi'(x')) + \left|\phi_{\mathcal{T}}(x) - \phi'_{\mathcal{T}}(x')\right| \right) \right\}$$

Can be extended to locally compact case.

CONVERGENCE OF SRW

Let $(T_n)_{n\geq 1}$ be a sequence of finite graph trees, and X^{T_n} the SRW on T_n .

Suppose that there exist null sequences $(a_n)_{n\geq 1}$, $(b_n)_{n\geq 1}$, $(c_n)_{n\geq 1}$ such that

$$(T_n, a_n d_{T_n}, b_n \mu_{T_n}, c_n \phi_{T_n}, \rho_{T_n}) \to (\mathcal{T}, d_{\mathcal{T}}, \mu_{\mathcal{T}}, \phi_{\mathcal{T}}, \rho_{\mathcal{T}})$$

in (\mathbb{T}_c, Δ_c) , where $(\mathcal{T}, d_{\mathcal{T}}, \mu_{\mathcal{T}}, \phi_{\mathcal{T}}, \rho_{\mathcal{T}})$ is an element of \mathbb{T}_c^* – those for which a polynomial lower volume bound is satisfied. Let $X^{\mathcal{T}}$ be Brownian motion on \mathcal{T} , then

$$\left(c_n \phi_{T_n} \left(X_{t/a_n b_n}^{T_n}\right)\right)_{t \ge 0} \to \left(\phi_{\mathcal{T}} \left(X_t^{\mathcal{T}}\right)\right)_{t \ge 0}$$

in distribution in $C(\mathbb{R}_+, \mathbb{R}^d)$, where we assume $X_0^{T_n} = \rho_{T_n}$ for each n, and also $X_0^{\mathcal{T}} = \rho_{\mathcal{T}}$.

Again, can extend to locally compact case.

BRANCHING RANDOM WALK (RECALLED)

We will call a pair (T, ϕ) , where T is a graph tree and $\phi : T \to \mathbb{R}^d$ a **graph spatial tree**.

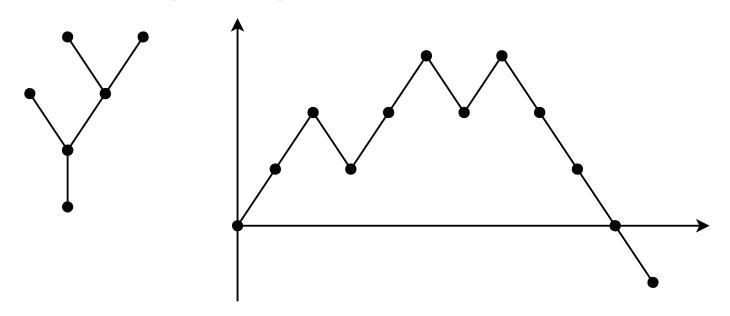
Given a graph tree T with root ρ , let $(\delta(e))_{e \in E(T)}$ be a collection of edge-indexed, i.i.d. random variables. Define $\phi: T \to \mathbb{R}^d$ by setting

$$\phi(v) = \sum_{e \in [[\rho, v]]} \delta(e);$$

note $(\phi(v))_{v \in T}$ is a **tree-indexed random walk**. In particular, if T is the tree generated by a branching process started with one initial ancestor, then the locations of $(\phi(v))_{v \in \text{generation } n}$, $n \geq 0$, form a **branching random walk**.

DISCRETE TOUR

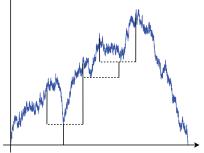
Given an ordered graph spatial tree (T, ϕ) , recall its contour function $(C(t))_{t \in [0,2(n-1)]}$:



Let $(R(t))_{t\in[0,2(n-1)]}$ be defined by setting $R(t)=\phi([t])$, where $[t]_T\in T$ is the vertex in t visited by the contour process at time t. We call (C,R) the tour associated with (T,ϕ) .

THE BROWNIAN TOUR

Consider a realisation of the Brownian excursion $(e(t))_{t \in [0,1]}$,



and its associated real tree $\mathcal{T}_e = [0,1]/\sim$, where $s \sim t$ iff $d_e(s,t) = 0$. Let $\phi: \mathcal{T}_e \to \mathbb{R}^d$ be a tree-indexed Brownian motion, i.e. $(\phi(v))_{v \in \mathcal{T}_e}$ is centred, Gaussian and

$$Cov(\phi(v), \phi(v')) = d_{\mathcal{T}_e}(\rho_{\mathcal{T}_e}, b_{\mathcal{T}_e}(\rho_{\mathcal{T}_e}, v, v')).$$

Almost-surely when e is a Brownian excursion, this has a continuous version, see [Duquesne/Le Gall 2005].

Define $(r(t))_{t\in[0,1]}\in C([0,1],\mathbb{R}^d)$ by setting $r(t)=\phi([t])$. The process (e,r) is then the **Brownian tour**.

CONVERGENCE OF TOURS

Suppose T_n are critical Galton-Watson trees with finite exponential moment, aperiodic offspring distribution, and that $\delta(e)$ are centred and satisfy $\mathbb{P}(\delta(e) > x) = o(x^{-4})$. Let σ^2 be the variance of the offspring distribution, and $\text{Var}\delta(e) = \Sigma$. Then

$$\left(n^{-1/2}C_{2(n-1)t}, n^{-1/4}R_{2(n-1)t}\right)_{t\in[0,1]}\to (\sigma_e e_t, \sigma_r r_t)_{t\in[0,1]},$$

in distribution in $C([0,1], \mathbb{R}_+ \times \mathbb{R}^d)$, where

$$\sigma_e = \frac{2}{\sigma}, \qquad \sigma_r = \Sigma \sqrt{\frac{2}{\sigma}}$$

[Janson/Marckert 2005].

SRW ON BRW CONVERGENCE

From the previous result, we deduce similarly to Section 2, that

$$(T_n, n^{-1/2} d_{T_n}, n^{-1} \mu_{T_n}, n^{-1/4} \phi_{T_n}, \rho_{T_n}) \to (\mathcal{T}, d_{\mathcal{T}}, \mu_{\mathcal{T}}, \phi_{\mathcal{T}}, \rho_{\mathcal{T}})$$

in (\mathbb{T}_c, Δ_c) , where $(\mathcal{T}, d_{\mathcal{T}}, \mu_{\mathcal{T}}, \phi_{\mathcal{T}}, \rho_{\mathcal{T}})$ is suitably rescaled copy of the Brownian continuum random tree, embedded into \mathbb{R}^d by a tree-indexed Brownian motion. Consequently, under the annealed law,

$$\left(n^{-1/4}\phi_{T_n}\left(X_{tn^{3/2}}^{T_n}\right)\right)_{t\geq 0} \to \left(\phi_{\mathcal{T}}\left(X_t^{\mathcal{T}}\right)\right)_{t\geq 0}$$

in distribution in $C(\mathbb{R}_+, \mathbb{R}^d)$, where we assume $X_0^{T_n} = \rho_{T_n}$ for each n, and also $X_0^{\mathcal{T}} = \rho_{\mathcal{T}}$.

Note in non-lattice case, this also implies convergence of walks on embedded graphs $G_n = \phi_{T_n}(T_n)$.

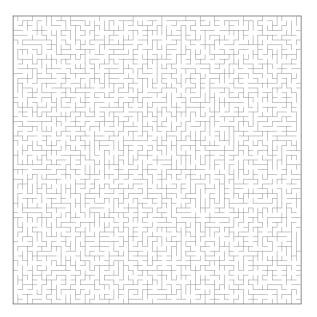
SOME OPEN QUESTIONS

At least in $d \geq 8$, where $\phi_{\mathcal{T}}(\mathcal{T})$ is itself a tree, is $\phi_{\mathcal{T}}(X^{\mathcal{T}})$ the scaling limit of random walk on lattice branching random walk?

How about for a large critical percolation cluster?

(The natural conjecture is yes!)

TWO-DIMENSIONAL UNIFORM SPANNING TREE (RECALLED)

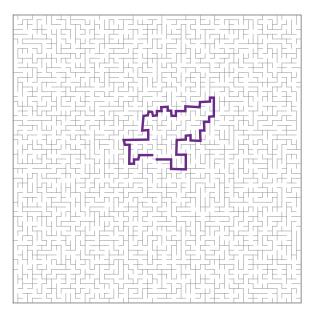


Let $\Lambda_n := [-n, n]^2 \cap \mathbb{Z}^2$.

Let $\mathcal{U}^{(n)}$ be a spanning tree of Λ_n selected uniformly at random from all possibilities.

The UST on \mathbb{Z}^2 , \mathcal{U} , is then the local limit of $\mathcal{U}^{(n)}$.

TWO-DIMENSIONAL UNIFORM SPANNING TREE (RECALLED)

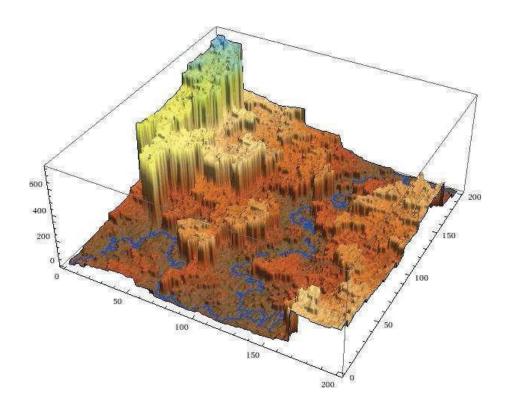


Let $\Lambda_n := [-n, n]^2 \cap \mathbb{Z}^2$.

Let $\mathcal{U}^{(n)}$ be a spanning tree of Λ_n selected uniformly at random from all possibilities.

The UST on \mathbb{Z}^2 , \mathcal{U} , is then the local limit of $\mathcal{U}^{(n)}$.

TWO-DIMENSIONAL UNIFORM SPANNING TREE (RECALLED)



The distances in the tree to the path between opposite corners in a uniform spanning tree in a 200×200 grid.

Picture: Lyons/Peres: Probability on trees and networks

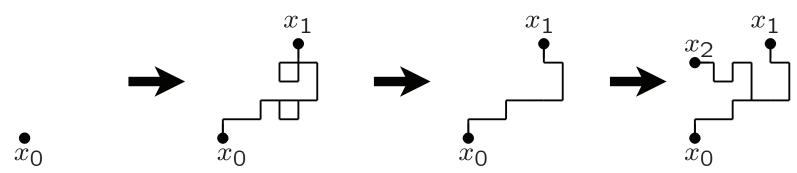
WILSON'S ALGORITHM ON \mathbb{Z}^2

Let $x_0 = 0, x_1, x_2, \dots$ be an enumeration of \mathbb{Z}^2 .

Let $\mathcal{U}(0)$ be the graph tree consisting of the single vertex x_0 .

Given $\mathcal{U}(k-1)$ for some $k \geq 1$, define $\mathcal{U}(k)$ to be the union of $\mathcal{U}(k-1)$ and the loop-erased random walk (LERW) path run from x_k to $\mathcal{U}(k-1)$.

The UST \mathcal{U} is then the local limit of $\mathcal{U}(k)$.

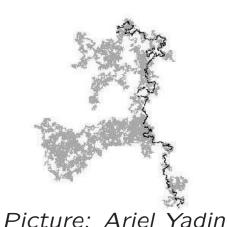


LERW SCALING IN \mathbb{Z}^d

Consider LERW as a process $(L_n)_{n\geq 0}$ (assume original random walk is transient).

In \mathbb{Z}^d , $d \geq 5$, L rescales diffusively to Brownian motion [Lawler].

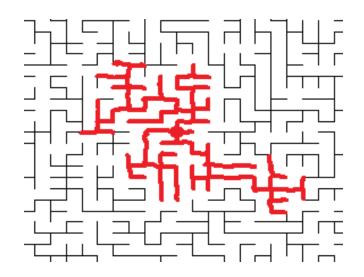
In \mathbb{Z}^4 , with logarithmic corrections rescales to Brownian motion [Lawler].



In \mathbb{Z}^3 , $\{L_n: n\in [0,\tau]\}$ has a scaling limit [Kozma].

In \mathbb{Z}^2 , $\{L_n : n \in [0,\tau]\}$ has SLE(2) scaling limit [Lawler/Schramm/Werner]. Growth exponent is 5/4 [Kenyon, Masson, Lawler].

VOLUME ESTIMATES [BARLOW/MASSON 2011]



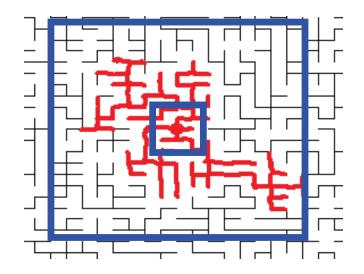
With high probability,

$$B_E(x, \lambda^{-1}R) \subseteq B_{\mathcal{U}}(x, R^{5/4}) \subseteq B_E(x, \lambda R),$$

as $R \to \infty$ then $\lambda \to \infty$. It follows that with high probability,

$$\mu_{\mathcal{U}}(B_{\mathcal{U}}(x,R)) \simeq R^{8/5}.$$

VOLUME ESTIMATES [BARLOW/MASSON 2011]



With high probability,

$$B_E(x, \lambda^{-1}R) \subseteq B_{\mathcal{U}}(x, R^{5/4}) \subseteq B_E(x, \lambda R),$$

as $R \to \infty$ then $\lambda \to \infty$. It follows that with high probability,

$$\mu_{\mathcal{U}}(B_{\mathcal{U}}(x,R)) \simeq R^{8/5}.$$

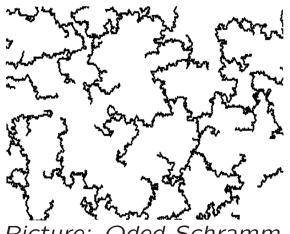
UST SCALING [SCHRAMM 2000]

Consider \mathcal{U} as an ensemble of paths:

$$\mathfrak{U} = \left\{ (a, b, \pi_{ab}) : a, b \in \mathbb{Z}^2 \right\},\,$$

where π_{ab} is the unique arc connecting a and b in \mathcal{U} , as an element of the compact space $\mathcal{H}(\dot{\mathbb{R}}^2 \times \dot{\mathbb{R}}^2 \times \mathcal{H}(\dot{\mathbb{R}}^2))$,

cf. [Aizenman/Burchard/Newman/Wilson].



Picture: Oded Schramm

S Scaling limit $\mathfrak T$ almost-surely satisfies:

- each pair $a, b \in \mathbb{R}^2$ connected by a path;
- if $a \neq b$, then this path is simple;
- if a = b, then this path is a point or a simple loop:
- the trunk, $\bigcup_{\mathfrak{T}} \pi_{ab} \setminus \{a,b\}$, is a dense topological tree with degree at most 3.

[Lawler/Schramm/Werner 2004] established associated (unparametrised) Peano curve has SLE(8) scaling limit.

Theorem. If P_{δ} is the law of the measured, rooted spatial tree

$$\left(\mathcal{U}, \delta^{5/4} d_{\mathcal{U}}, \delta^{2} \mu_{\mathcal{U}}(\cdot), \delta \phi_{\mathcal{U}}, 0\right)$$

under P, then the collection $(P_{\delta})_{\delta \in (0,1)}$ is tight in $\mathcal{M}_1(\mathbb{T})$.

Proof involves:

- strengthening estimates of [Barlow/Masson],
- comparison of Euclidean and intrinsic distance along paths.

· · · · · · ·

.

• • • • • •

.

• • • • • •

.

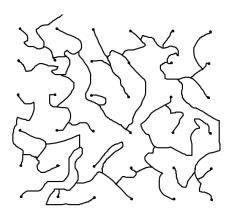
Theorem. If P_{δ} is the law of the measured, rooted spatial tree

$$\left(\mathcal{U}, \delta^{5/4} d_{\mathcal{U}}, \delta^{2} \mu_{\mathcal{U}}(\cdot), \delta \phi_{\mathcal{U}}, 0\right)$$

under P, then the collection $(P_{\delta})_{\delta \in (0,1)}$ is tight in $\mathcal{M}_1(\mathbb{T})$.

Proof involves:

- strengthening estimates of [Barlow/Masson],
- comparison of Euclidean and intrinsic distance along paths.



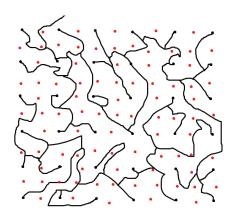
Theorem. If P_{δ} is the law of the measured, rooted spatial tree

$$\left(\mathcal{U}, \delta^{5/4} d_{\mathcal{U}}, \delta^{2} \mu_{\mathcal{U}}(\cdot), \delta \phi_{\mathcal{U}}, 0\right)$$

under P, then the collection $(P_{\delta})_{\delta \in (0,1)}$ is tight in $\mathcal{M}_1(\mathbb{T})$.

Proof involves:

- strengthening estimates of [Barlow/Masson],
- comparison of Euclidean and intrinsic distance along paths.



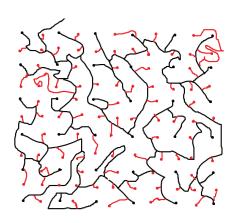
Theorem. If P_{δ} is the law of the measured, rooted spatial tree

$$\left(\mathcal{U}, \delta^{5/4} d_{\mathcal{U}}, \delta^{2} \mu_{\mathcal{U}}(\cdot), \delta \phi_{\mathcal{U}}, 0\right)$$

under P, then the collection $(P_{\delta})_{\delta \in (0,1)}$ is tight in $\mathcal{M}_1(\mathbb{T})$.

Proof involves:

- strengthening estimates of [Barlow/Masson],
- comparison of Euclidean and intrinsic distance along paths.



LIMITING PROCESS FOR SRW ON UST [j/w BARLOW/KUMAGAI]

Suppose $(P_{\delta_i})_{i\geq 1}$, the laws of

$$\left(\mathcal{U}, \delta_i^{5/4} d_{\mathcal{U}}, \delta_i^2 \mu_{\mathcal{U}}, \delta_i \phi_{\mathcal{U}}, 0\right),$$

form a convergent sequence with limit $\tilde{\mathbf{P}}$.

Let $(\mathcal{T}, d_{\mathcal{T}}, \mu_{\mathcal{T}}, \phi_{\mathcal{T}}, \rho_{\mathcal{T}}) \sim \tilde{\mathbf{P}}$. It is then the case that \mathbb{P}_{δ_i} , the annealed laws of

$$\left(\delta_i X_{\delta_i^{-13/4}t}^{\mathcal{U}}\right)_{t\geq 0},$$

converge to $\tilde{\mathbb{P}}$, the annealed law of

$$\left(\phi_{\mathcal{T}}(X_t^{\mathcal{T}})\right)_{t\geq 0},$$

as probability measures on $C(\mathbb{R}_+, \mathbb{R}^2)$.